The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #2

Date: November 18, 2010 Course: EE 313 Evans

Name:			
	Last,	First	

- The exam is scheduled to last 75 minutes.
- Open books and open notes. You may refer to your homework assignments and homework solution sets.
- Power off all cell phones
- You may use any standalone calculator or other computing system, i.e. one that is not connected to a network.
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- Fully justify your answers unless instructed otherwise.

Problem	Point Value	Your score	Topic
1	24		Differential Equation
2	21		Integrator
3	24		Transfer Functions
4	21		Quadrature Amplitude Modulation
5	10		Fourier Series
Total	100		

Problem 2.1 Differential Equation. 24 points.

For a continuous-time linear time-invariant (LTI) system with input x(t) and output y(t) is governed by the differential equation

$$\frac{d^2}{dt^2}y(t) + 5\frac{d}{dt}y(t) + 6y(t) = x(t)$$

for $t \ge 0^-$.

(a) Find the transfer function in the Laplace domain. 6 points.

(b) Draw the pole-zero diagram in the Laplace domain. What are the pole location(s)? What are the zero location(s)? 6 points.

(c) Find the impulse response. 6 points.

(d) Give a formula for the step response of the system in the time domain. 6 points.

$$X(s)$$
 + $Ex(t)$ $y(t)$ $Y(s)$

Problem 2.2 Integrator. 21 points.

A continuous-time linear time-invariant (LTI) integrator is shown on the right. The initial condition $y(0^{\circ}) = 0$ for LTI.

(a) For the integrator above, give formulas for the impulse response g(t), the transfer function in the Laplace domain G(s), and the frequency response $G_{freq}(\omega)$ or $G_{freq}(f)$. 9 points.

- (b) Is the integrator bounded-input bounded-output (BIBO) stable? Why or why not? 3 points.
- (c) Consider the following LTI feedback system using the integrator building block, where G(s) represents the LTI integrator and K represents a scalar gain under computer control.

What is the transfer function H(s)? 3 points.

For what values of *K* is the system BIBO stable? *3 points*.

When system is BIBO stable, what kind of frequency selectivity does the system have? Lowpass, highpass, bandpass, bandstop, notch or all-pass? *3 points*.

Problem 2.3 Transfer Functions. 24 points.

A causal linear time-invariant (LTI) continuous-time system has the following transfer function in the Laplace transform domain:

$$H(s) = \frac{s-1}{s+1}$$

(a) Find the corresponding differential equation using x(t) to denote the input signal and y(t) to denote the output signal. Give the minimum number of initial conditions, and their values. 6 points.

(b) Is the system bounded-input bounded-output (BIBO) stable? Why or why not? 6 points.

(c) Give a formula for the frequency response. 6 points.

(d) Plot the magnitude of the frequency response and describe the system's frequency selectivity (lowpass, highpass, bandpass, bandstop, notch or all-pass). 6 points.

Problem 2.4 Quadrature Amplitude Modulation (2) 2 (2) (1)

Quadrature amplitude modulation uses cosine modulation and sine modulation together to use bandwidth more efficiently than using cosine modulation alone. Assume $f_c > f_{\text{max}}$.

(a) For amplitude modulation using the cosine below, draw the spectrum $S_1(f)$. What is the transmission bandwidth? 6 points.

(b) For amplitude modulation using the sine below, draw the spectrum $S_2(f)$. 6 points.

(c) Draw the spectrum of $S_1(f) - S_2(f)$. How would this more efficiently use transmission bandwidth than using amplitude modulation by a cosine? *9 points*.

Problem 2.5 Fourier Series. 10 points.

Compute the Fourier series according to its definition of the following signal:

-1

The fundamental period T_0 is 2 s.